📔
Cyber Security Notes
  • Introduction
  • CVEs
    • CVE-2022-33106
  • Paper Reviews
    • Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice
  • Security Basics Notes
    • Identification, Authentication and Authorization
  • Enumeration and Initial Compromise
    • Methodology
    • Footprinting
    • Network Protocols
      • FTP
      • SMB
      • DNS
      • NFS
      • SMTP
      • IMAP/POP3
      • SNMP
      • MySQL
      • MSSQL
      • Oracle TNS
      • IPMI
    • Nifty One Liners
    • Brute-Force Web Pages
      • Hydra
    • Network Pentest
      • Quick SMB cheatsheet
      • SSH keypair basics
      • Compromise using SSH Key
      • Networking fundamentals Interview topics
      • nmap quick cheatsheet
      • Metasploit Quick Reference
    • Web Pentest
      • Web Pentest Interview top topics
      • Wordpress Exploitation
      • Joomla Exploitation
      • Login Bypass using Cookie Tampering/Poisoning
      • Subdomain Enumeration
      • CSRF mitigation
      • XSS mitigation
      • CSP bypass with JSONP
      • PHP Vulnerabilities
      • Python Serialization Vulnerabilities - Pickle
      • SQL Injections
        • SQLmap
      • SSTI
      • XSS
    • Buffer Overflow Prep
      • Understanding CPUs
      • Virtual Memory and Paging
      • Syscalls
      • Theorem Proving
      • Stripping readable function names
      • Insecure C functions
      • Stack Canaries
      • Linking - GOT,PLT
      • Return Oriented Programming
    • Active Directory - Basics
      • AD DS
      • Managing OUs
      • Group Policies
      • Authentications
      • Trees, Forests and Trusts
      • Kerberos
      • Attacking Kerberos
      • Priv Esc (Post Exploitation)
    • DNS/Domain Enum Masterguide
  • Post Exploitation
    • Shell Escape Techniques
    • Getting stable shell after compromise
    • Linux Privilege Escalation
      • Sudoers file
      • Sudoers entry - Yum
      • Wildcards - Basics
      • Wildcards - Chown
      • Wildcards - Tar
      • Linux Permissions & SUID/SGID/Sticky Bit
      • SUID - nmap
      • SUID - bash
      • SUID - man
      • NFS no_root_squash
      • SUID - pkexec
      • Bad permissions
    • Windows Privilege Escalation
      • SeImpersonatePrivilege Token Impersonation
      • Firefox Creds
      • Potatoes
      • Print Spooler Basics
      • Print Spooler CVE 2020-1030
      • SpoolFool
    • Data Exfiltration Post Exploitation
  • Port Forwarding Cheatsheet
  • Powershell Essentials
    • Powershell Basics
    • Powershell Enumeration
    • Powershell Port Scanner
    • Powershell One Liner Port Scanning
    • Powershell Port Scan in a given CIDR
  • Application Security
    • System Calls in Linux
    • Buffer Overflow Defenses
    • Format string vulnerabilities
    • Sample Github Actions
    • Basic Bugs in Demo Application
    • Using AFL++
  • Linux 64-bit Assembly
    • GDB Basics
      • My relevant GDB cheatsheet
      • Task 1 - Tamper strcmp logic
      • Breakpoints
      • Always starting with intel flavor
      • GDB TUI Mode
    • Basic Hello World Program
    • Registers in 64-bit
    • global directive
    • Reducing instructions and Removing NULL-> Optimizing memory in Assembly
    • Data Types
    • Endianness
    • Moving Data
    • push, pop, and the stack
    • Analysis - Writing data on memory location and referencing
    • Arithmetic Operations
    • Bitwise Logical Operations
    • Bit-Shifting Operations
    • Control Instructions
    • Loops
    • Procedures
    • Stack-Frames and Procedures
    • String Operations
    • Shellcoding basics
      • Introduction and Common Rules
      • Basic Shellcodes->Exit
      • Testing shellcode->Skeleton Code
      • Techniques-> JMP,CALL,POP
      • Techniques-> Stack
      • Techniques-> (64-bit only) RIP Relative Addressing
      • Shellcode 1 -> execve(/bin/sh) STACK PUSH
      • Shellcode 1 -> execve(/bin/sh) JMP CALL POP
      • Techniques-> XOR-Encoder
  • Cloud Security
    • Foundational Technology
    • Learning Through Project Omega
    • IAM Essentials
      • Deep dive into IAM - Part 1
    • Amazon S3
    • Risk Management & Data Controls
    • Enumeration
      • S3 - Enum Basics - PwnedLabs
      • S3 - Identify the AWS Account ID from a Public S3 Bucket
      • EBS - Loot Public EBS Volumes
      • S3- Exploit Weak Bucket Policies for Privileged Access
  • API Security
    • WSDL
  • Reverse Engineering
    • Some string Operations
    • Numbers and Inputs
    • Address inputs
    • Recursive Function
    • Crackme: level1
    • Crackme: level2
    • CTF: Memory Dereferencing
    • CTF: Monty Python
  • CTF Challenge Learnings
    • vsCTF 2024
      • Sanity Check
      • not-quite-caesar
      • Intro to reversing
    • NCL Individual 2024
      • Web Challenges
        • PiratePals
        • Pierre's Store
    • Pico CTF 2024
      • Web Exploitation
        • Bookmarklet
        • WebDecode
        • Unminify
        • Trickster
      • General Skills
        • Commitment Issues
        • Time Machine
        • Blame Game
        • Collaborative Development
        • Binary Search
        • Dont-you-love-banners
    • Sunshine CTF
      • Knowledge Repository
    • Amazon WiCys CTF
      • I am Lazy
      • Password Locker on the Web
      • Happy Birthday Card Generator
      • Bloggergate
      • simple offer
      • Bad Actor
      • Secret Server
      • Simple PCAP
      • Hidden Message
    • C code using getenv()
    • Command Injection with filter
    • Pwning
      • Shoddy_CMP
      • PLT_PlayIT
  • Applied Cryptography
    • Linear Congruential Generator
  • Tools for everything
Powered by GitBook
On this page

Was this helpful?

  1. Enumeration and Initial Compromise
  2. Active Directory - Basics

Authentications

PreviousGroup PoliciesNextTrees, Forests and Trusts

Last updated 2 years ago

Was this helpful?

When using Windows domains, all credentials are stored in the Domain Controllers. Whenever a user tries to authenticate to a service using domain credentials, the service will need to ask the Domain Controller to verify if they are correct. Two protocols can be used for network authentication in windows domains:

  • Kerberos: Used by any recent version of Windows. This is the default protocol in any recent domain.

  • NetNTLM: Legacy authentication protocol kept for compatibility purposes.

While NetNTLM should be considered obsolete, most networks will have both protocols enabled. Let's take a deeper look at how each of these protocols works.

Kerberos Authentication

Kerberos authentication is the default authentication protocol for any recent version of Windows. Users who log into a service using Kerberos will be assigned tickets. Think of tickets as proof of a previous authentication. Users with tickets can present them to a service to demonstrate they have already authenticated into the network before and are therefore enabled to use it.

When Kerberos is used for authentication, the following process happens:

  1. The user sends their username and a timestamp encrypted using a key derived from their password to the Key Distribution Center (KDC), a service usually installed on the Domain Controller in charge of creating Kerberos tickets on the network.

    The KDC will create and send back a Ticket Granting Ticket (TGT), which will allow the user to request additional tickets to access specific services. The need for a ticket to get more tickets may sound a bit weird, but it allows users to request service tickets without passing their credentials every time they want to connect to a service. Along with the TGT, a Session Key is given to the user, which they will need to generate the following requests.

    Notice the TGT is encrypted using the krbtgt account's password hash, and therefore the user can't access its contents. It is essential to know that the encrypted TGT includes a copy of the Session Key as part of its contents, and the KDC has no need to store the Session Key as it can recover a copy by decrypting the TGT if needed.

  2. Kerberos step 1
  3. When a user wants to connect to a service on the network like a share, website or database, they will use their TGT to ask the KDC for a Ticket Granting Service (TGS). TGS are tickets that allow connection only to the specific service they were created for. To request a TGS, the user will send their username and a timestamp encrypted using the Session Key, along with the TGT and a Service Principal Name (SPN), which indicates the service and server name we intend to access.

    As a result, the KDC will send us a TGS along with a Service Session Key, which we will need to authenticate to the service we want to access. The TGS is encrypted using a key derived from the Service Owner Hash. The Service Owner is the user or machine account that the service runs under. The TGS contains a copy of the Service Session Key on its encrypted contents so that the Service Owner can access it by decrypting the TGS.

  4. Kerberos step 2
  5. The TGS can then be sent to the desired service to authenticate and establish a connection. The service will use its configured account's password hash to decrypt the TGS and validate the Service Session Key.

NetNTLM Authentication

NetNTLM works using a challenge-response mechanism. The entire process is as follows:

  1. The client sends an authentication request to the server they want to access.

  2. The server generates a random number and sends it as a challenge to the client.

  3. The client combines their NTLM password hash with the challenge (and other known data) to generate a response to the challenge and sends it back to the server for verification.

  4. The server forwards the challenge and the response to the Domain Controller for verification.

  5. The domain controller uses the challenge to recalculate the response and compares it to the original response sent by the client. If they both match, the client is authenticated; otherwise, access is denied. The authentication result is sent back to the server.

  6. The server forwards the authentication result to the client.

Note that the user's password (or hash) is never transmitted through the network for security.

Note: The described process applies when using a domain account. If a local account is used, the server can verify the response to the challenge itself without requiring interaction with the domain controller since it has the password hash stored locally on its SAM.

Kerberos step 3
NetNTLM authentication